top of page

Levant Basin tectono-stratigraphy

  1. Gvirtzman, Z., Zilberman, E., Folkman, Y., 2008.
    Reactivation of the Levant passive margin during the late Tertiary and formation of the Jaffa Basin offshore central Israel,
    Journal of the Geological Society, 165, 563-578, doi:10.1144/0016-76492006-200;

  2. Steinberg, J., Gvirtzman, Z., Gvirtzman, H., Ben Gai, Y., 2008.
    Late Tertiary faulting along the coastal plain of Israel.
    Tectonics, 27, doi:10.1029/2007TC002151.

  3. Steinberg, J., Gvirtzman, Z., Folkman, Y., 2010.
    New age constraints on the evolution of the Mt. Carmel structure and its implications on a Late Miocene extensional phase of the Levant continental margin.
    Journal of the Geological Society, vol. 167, 203-216, doi: 10.1144/0016-76492009-089.

  4. Gvirtzman, Z., Steinberg, J., Siman-Tov, R., Zilberman, E., Bar, O., Calvo, R., Grossowicz, L., Almogi-Labin, A., and Rosensaft, M., 2011.
    Retreating Late Tertiary Shorelines in Israel: Implications for the Exposure of north Arabia and Levant During Neo-Tethys Closure. Lithosphere, vol. 3, 95-109. DOI: 10.1130/L124.1.

  5. Gvirtzman, Z. and Steinberg, J., 2012,
    Inland jump of the Arabian northwest plate boundary from the Levant continental margin to the Dead Sea Transform, Tectonics, vol. 31, TC4003, doi:10.1029/2011TC002994.

  6. Bar, O., Gvirtzman, Z., Feinstein, S., Zilberman, E., 2013,
    Accelerated Subsidence and Sedimentation in the Levant Basin during the Late Tertiary and Concurrent Uplift of the Arabian Platform: Tectonic versus Counteracting Sedimentary Loading Effects, Tectonics, vol. 32 (3), 334-350, DOI: 10.1002/tect.20026.

  7. Sagy. Y., Gvirtzman, Z., Reshef, M., Makovsky. Y.,  2015,
    The Enigma of the Jonah high in the Middle of the Levant Basin and its Significance to the History of Rifting, Tectonophysics 10/2015; DOI:10.1016/j.tecto.2015.09.037

  8. Bar, O., Zilberman, E., Feinstein, S., Calvo, R., & Gvirtzman, Z., 2016. The uplift history of the Arabian Plateau as inferred from geomorphologic analysis of its northwestern edge. Tectonophysics, 671, 9-23.   https://doi.org/10.1016/j.tecto.2016.01.004

  9. Sagy. Y., Gvirtzman, Z., Reshef, 2018,
    80 m.y. of folding migration: New perspective on the Syrian arc from Levant Basin analysis, Geology, doi.org/10.1130/G39654.1

 

Sediment transport and deposition

  1. Steinberg, J., Gvirtzman, Z., Folkman, Y., and Garfunkel, Z. 2011.
    Origin and nature of the rapid late Tertiary filling of the Levant Basin.
    Geology, vol. 39, 355-358. DOI: 10.1130/G31615.1.

  2. Gvirtzman, Z., Csato, I., Granjeon, D., 2014,
    Constraining sediment transport to deep marine basins through submarine channels: the Levant margin in the Late Cenozoic, Marine Geology, vol. 347 p. 12–26, 10.1016/j.margeo.2013.10.010

  3. Zucker E., Gvirtzman Z., Steinberg J., Enzel Y., 2017.
    Diversion and morphology of submarine channels in response to regional slopes and localized salt tectonics, Levant Basin, Marine and Petroleum Geology, 81, 98-111.

  4. Sagy, Y., Dror, O., Gardosh, M.,  Reshef, M. 2020.
    The origin of the Pliocene to recent succession in the Levant basin and its depositional pattern, new insight on source to sink system. Marine and Petroleum Geology, 120, 104540.

  5. Zucker, E., Gvirtzman, Z., Granjeon, D., Garcia-Castellanos, D., Enzel, Y., 2021.
    The accretion of the Levant continental shelf alongside the Nile Delta by immense margin-parallel sediment transport. Marine and Petroleum Geology, 126, p.104876.

 

Messinian Salinity Crisis and salt tectonics

  1. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O., Ben-Avraham, Z., 2013,
    Intense salt deformation in the Levant Basin in the middle of the Messinian Salinity Crisis, Earth and Planetary Science Letters, vol. 379, 109-119.

  2.  Lugli, S., Gennari, R., Gvirtzman, Z., Manzi, V., Roveri, M. and Schreiber, C., 2013,
    Evidence of Clastic Evaporites In the Canyons of the Levant Basin (Israel): Implications For the Messinian Salinity Crisis, Journal of Sedimentary Research, v. 83, p. 942-954.

  3. Gvirtzman, Z., Reshef, M., Buch-Leviatan, O., Groves-Gidney, G., Karcz, Z., Makovsky, Y., & Ben-Avraham, Z., 2015.
    Bathymetry of the Levant basin: interaction of salt-tectonics and surficial mass movements, Marine Geology, 360, 25-39.

  4. Katz, O., Reuven, E., Elfassi, Y., Paldor, A., Gvirtzman, Z., Aharonov, E., 2016,
    Spatial and temporal relation of submarine landslides and faults along the Israeli continental slope, eastern Mediterranean, Submarine Mass Movements and their Consequences, 351-359

  5. Gvirtzman, Z., Manzi, V., Calvo, R., Lugli, S., Gennari, R., Gavrieli, I., Roveri, M., 2017,
    Intra-Messinian Dissolution Surface in the Levant Basin, Geology, Geology,  doi:10.1130/G39113.1

  6. Manzi V, Gennari R, Lugli S, Persico, Matteo R, Roveri, M, Schreiber, M C, Calvo R, Gavrieli I,  Gvirtzman Z, 2018. The onset of the Messinian salinity crisis in the deep Eastern Mediterranean basin,  Terra Nova; doi.org/10.1111/ter.12325

  7. Elfassi, Y., Gvirtzman, Z., Katz, O. and Aharonov, E., 2019.
    Chronology of post-Messinian faulting along the Levant continental margin and its implications for salt tectonics. Marine and Petroleum Geology. https://doi.org/10.1016/j.marpetgeo.2019.05.032

  8. Zucker, E., Gvirtzman, Z., Steinberg, J., Enzel, Y., 2020. Salt tectonics in the Eastern Mediterranean Sea: Where a giant delta meets a salt giant. Geology, 48(2), pp.134-138.

  9. Moneron, J. and Gvirtzman, Z., 2022. Late Messinian submarine channel systems in the Levant Basin: Challenging the desiccation scenario. Geology, 50(12), pp.1366-1371.

  10. Gvirtzman, Z., Heida, H., Garcia-Castellanos, D., Bar, O., Zucker, E. and Enzel, Y., 2022. Limited Mediterranean sea-level drop during the Messinian salinity crisis inferred from the buried Nile canyon. Communications Earth & Environment, 3(1), p.216

  11. Andreetto, F., Aloisi, G., Raad, F., Heida, H., Flecker, R., Agiadi, K., Lofi, J., Blondel, S., Bulian, F., Camerlenghi, A. and Caruso, A., 2021. Freshening of the Mediterranean Salt Giant: controversies and certainties around the terminal (Upper Gypsum and Lago-Mare) phases of the Messinian Salinity Crisis. Earth-Science Reviews, 216, p.103577.

  12. Manzi, V., Gennari, R., Lugli, S., Persico, D., Roveri, M., Gavrieli, I. and Gvirtzman, Z., 2021. Synchronous onset of the Messinian salinity crisis and diachronous evaporite deposition: New evidences from the deep Eastern Mediterranean basin. Palaeogeography, Palaeoclimatology, Palaeoecology, 584, p.110685.

  13. Ben Zeev, Y., & Gvirtzman, Z. (2020). When two salt tectonics systems meet:Gliding downslope the Levant margin and salt out‐squeezing from under the Nile delta. Tectonics, 39, e2019TC005715.

  14. Hamdani, I., Aharonov, E., Olive, J.A., Parez, S. and Gvirtzman, Z., 2021. Initiating salt tectonics by tilting: Viscous coupling between a tilted salt layer and overlying brittle sediment. Journal of Geophysical Research: Solid Earth, 126(7), p.e2020JB021503

  15. Laor, M. and Gvirtzman, Z., 2023. Classifying marine faults for hazard assessment offshore Israel: a new approach based on fault size and vertical displacement. Natural Hazards and Earth System Sciences, 23(1), pp.139-158.

 

Lithospheric structure

  1. Gvirtzman, Z, Faccenna, C., Becker T.W., 2016, 
    Isostasy, flexure, and dynamic topography,
    Tectonophysics, doi:10.1016/j.tecto.2016.05.041;

  2. Faccenna, C., Glišović, P., Forte, A., Becker, T.W., Garzanti, E., Sembroni, A. and Gvirtzman, Z., 2019. Role of dynamic topography in sustaining the Nile River over 30 million years. Nature Geoscience, 12(12), pp.1012-1017.

 

Earthquake ground motion amplification

  1. Gvirtzman, Z., Louie, J.N., 2010.
    2D analysis of earthquake ground motion in Haifa Bay, Israel.
    Bulletin of the Seismological Society of America, 100, 733-750, doi:10.1785/0120090019.

  2. Shani-Kadmiel, S., Tsesarsky, M., Louie, JN., Gvirtzman, Z., 2012. Simulation of seismic wave propagation through geometrically complex basins - the Dead Sea Basin
    Bulletin of the Seismological Society of America, v. 102, 1729-1739;
    doi: 10.1785/​0120110254.

  3. Shani-Kadmiel, S., Tsesarsky, M., Louie, JN., Gvirtzman, Z., 2014
    Geometrical focusing of seismic waves by buried geological structures – analytical and numerical study, Bulletin of Earthquake Engineering, DOI 10.1007/s10518-013-9526-4a.

  4. Shani-Kadmiel, Tsesarsky. M., and Gvirtzman Z., 2016
    Distributed Slip Model for Forward Modeling Strong Earthquakes,
    Bulletin of the Seismological Society of America, Vol. 106, No. 1, pp. 93–103, doi: 10.1785/0120150102

  5. Volk, O., Shani-Kadmiel, S., Gvirtzman, Z., Tesarsky, M. 2017,
    3D effects of sedimentary wedges and sub-surface canyons: ground motion amplification in the Israeli coastal plain, Bulletin of the Seismological Society of America,

  6. Shani-Kadmiel, S., Volk, O., Gvirtzman, Z. and Tesarsky, M. (2018).
    Ground motion amplification atop the complex sedimentary basin of Haifa Bay (Israel).
    Bull Earthquake Eng, https://doi.org/10.1007/s10518-018-00533-9

  7. Shimony, R., Z. Gvirtzman, and M. Tsesarsky (2020). Seismic Energy Release from Intra-Basin Sources along the Dead Sea Transform and Its Influence on Regional Ground Motions, Bull. Seismol. Soc. Am. XX, 1–14, https://doi.org/10.1785/0120200215

 

Maps and charts

  1. Gvirtzman Z., 2004,
    Chronostratigraphic table and subsidence curves of southern Israel,
    A wall chart, Appendix of a paper in Israel J. Erath Sci., 53, 47-61.

  2. Gvirtzman, Z., Zaslavsky, Y., 2009,
    Map of Zones with Potentially High Ground Motion Amplification,
    Appendix of Israel Building Code 413 (explanatory notes in Rep. GSI/152/20098)

  3. Ocean Floor Morphology in the Southern Levant Basin, 2015
    Geological Survey of Israel, 3D image and maps.

bottom of page